

Ē	Descriptive Statistics
<	Describes data.
	Describes quantitatively how a particular characteristic is distributed among one or more groups of people.
	No generalizations beyond the sample represented by the data are made by descriptive statistics.
<	However, if your data represents an entire population, then the data are considered to be <i>population parameters</i> .
	3

-	
	Inferential Statistics
	If study data represents a population sample, then we will need to make "inferences" about the likelihood the sample data can be generalized to the population.
	Inferential statistics allow the researcher to make a probability statement regarding how likely it is that the sample data is generalizable back to the population.
	 For example Is the difference between means real or the result of sampling error? "Inferential statistics are the data analysis techniques for determining how likely it is that results obtained from a sample or samples are the same results that would have been
	obtained for the entire population" (p. 337) 4

♦ Do	not "prove" beyond any doubt that sample
res	ults are a reflection of what is happening in
♦ Do	allow for a probability statement regarding
wh	other or not the difference is real or the
vvii	ether of not the unreferice is real of the
res	ult of sampling error.

٦ 🔶	o make my discussion more concrete, in
s	mall groups
$\uparrow\uparrow$	 Identify a population
	Discuss how to select a sample
$\left\{ - \right\}$	Determine how to divide the sample into 2 groups
	Identify an IV and a DV
	Indicate what the use of inferential statistics will
	allow you to do
1.1	We will use these designs throughout class

Basic Concepts Underlyin Inferential Statistics	ng		
Standard error of the mean			
♦ Null Hypothesis (H₀)			
Tests of Significance			
♦ Type I and Type II Errors			
Levels of Significance			
Practical Significance			
♦ Two- & One-tailed Tests			
Degrees of Freedom			
		8	

Basic Concepts Underlying Inferential Statistics
 Standard Error Samples are virtually never a perfect match with the population (i.e., identical to population parameters). The variation among the sample means drawn from a given population, relative to the population mean, is referred to as <i>sampling error</i>.
 The variation among an infinite number of sample means, relative to the population mean, typically forms a normal curve. The standard deviation of the distribution of sample means is usually called the standard error of the mean. Smaller standard error scores indicates less sampling error.

00	56	imp	ne i	vie	ans	5			
64	82	87	94	98	100	103	108	113	121
67	83	88	95	98	100	103	108	114	111
68	83	88	96	98	100	104	109	115	123
70	84	89	96	98	101	104	109	116	124
71	84	90	96	98	101	105	110	117	125
72	84	90	97	99	101	105	110	117	127
74	84	91	97	99	102	106	111	118	130
75	85	92	97	99	102	106	111	119	131
75	86	93	97	99	102	107	112	119	136
78	86	94	97	99	103	107	112	120	142

The st	andard error of the mean can be
estimation	ated from the standard deviation
of a single	ngle sample using this formula
SE _x = _	<u>SD</u>
As samp	ble size goes up, sampling error
goes do	wn. WHY???

Basic Concepts Underlying Inferential Statistics	
 Standard error of the mean 	
♦ Null Hypothesis (H₀)	
Tests of Significance	
Type I and Type II Errors	
Levels of Significance	
Practical Significance	
♦ Two- & One-tailed Tests	
Degrees of Freedom	
	17

Basic Concepts Underlying Inferential Statistics	
 Null Hypothesis (H_o) A statement that the obtained differences (or observed relationships) being investigated are not significant (e.g., the observed sample mean differences are in fact just a chance occurrence). 	
 In other words, the findings are not indicative of wh is really going on within the population (the differences are due to sampling error) 	at
Stating: "The null hypothesis was rejected."	
 Is synonymous with: "The differences among sample means big enough to suggest they are likely real and not chance occurrences." 	are
	3

Basic Concepts Underlying Inferential Statistics
Null Hypothesis (H _o) Small group discussion:
 What is the Null Hypothesis for the studies you just constructed?
 If you conclude that the Null Hypothesis should be rejected what does it mean?
 To test a null hypothesis you will need a test of significance (and a selected probability value).

Basic Concepts Underlying Inferential Statistics	9
 Standard error of the mean 	
♦ Null Hypothesis (H₀)	
Tests of Significance	
◆ Type I and Type II Errors	
Levels of Significance	
Practical Significance	
♦ Two- & One-tailed Tests	
Degrees of Freedom	
	20

	Basic Concepts Underlying Inferential Statistics	
	♦ Tests of Significance	
<u>}</u>	What does this mean?	
	■ <i>t</i> = 7.3, <i>df</i> = 105, <i>p</i> = .03	

Basic Concepts Underlying Inferential Statistics	
♦ Tests of Significance	
 The inferential statistic that allows the researcher to conclude if the null hypoth should or should not be rejected. 	esis
 A test of significance is usually carried o using a pre-selected significance level (o alpha value) reflecting the chance the researcher is willing to accept when mak a decision about the null hypothesis Typically no greater than 5 out of 100. 	ut or (ing
Is a "significant" difference always an "important" difference????	22

_			

Basic Concepts Underlying Inferential Statistics
 ♦ Tests of Significance
 Small group discussion: What are the stakes involved in your study? In other words, what will happen if you are wrong (i.e., you conclude your IV has an effect when it really does not)? Does it out weigh the benefits of being right?
23

Basic Concepts Underlying	
Standard error of the mean	
Null Hypothesis (H₀)	
Tests of Significance	
Type I and Type II Errors	
Levels of Significance	
Practical Significance	
Two- & One-tailed Tests	
Degrees of Freedom	

Basic Concepts Underlying Inferential Statistics	
 Type I Error Incorrectly concluding that the null hypothesis should be rejected (i.e., concluding that a findin significant or not likely a chance occurrence) wil in fact it reflects a chance sampling error. 	g is h en
 Type II Error Incorrectly concluding that the null hypothesis should be accepted (i.e., concluding that the fin is a chance sampling error, or not significant), w in fact it reflects a real difference within the population being sampled 	ding vhen
	25

Ba Inf	sic Co erenti	oncep al Sta	ots L atisti	Jnd cs	erlyi	ng		
◆ In ■	small g In your s Type I or Why (sh	roups d tudy wha a Type ould be c	iscus at conc II erroi connec	sion: erns y ? ted to	you the	e most: ior disc	making ussion)?	a
							27	

Basic Concepts Underlying Inferential Statistics	
Standard error of the mean	
♦ Null Hypothesis (H _o)	
Tests of Significance	
♦ Type I and Type II Errors	
Levels of Significance	
Practical Significance	
Two- & One-tailed Tests	
Degrees of Freedom	
	28

Basic Concepts Underlying Inferential Statistics
 Levels of Significance Reflects the chance the researcher is willing to take of making an incorrect decision about the obtained result (i.e., that the result was due to sampling error). There are a variety of tests of significance (e.g., <i>t</i>-test, <i>F</i>-test, chi-square). As a rule the larger the score on a given test, the greater the likelihood that the result is significant (i.e., not a chance occurrence, not a reflection of sampling error, or an indication that the null hypothesis should be rejected).
29

Basic Concepts Underlying Inferential Statistics
◆ Level of Significance
 For every test, the researcher must select a minimum value that the statistical test must exceed to be regarded as significant.
 Generally, the larger the sample size the smaller the test score must be to reach statistical significance. [Why is this the case?]
 A level of significance (or <i>alpha</i> ["α"]) value of .05 (<i>p</i><.05) means that the researcher is willing to accept a 5% chance of making a Type I error.
 In other words, the researcher would be 95% sure that the difference or relationship observed is not a chance occurrence and can reasonably be generalized to the population (i.e., it is not due to "sampling error").
30

Basic Concepts Underlying Inferential Statistics
 Levels of Significance Reducing the probability of making a <i>Type I</i> error, by increasing the level of significance required to reject the null hypothesis (e.g., from .05 to .01), increases the probability of making a Type II error.
 Reducing the probability of making a <i>Type II</i> error, by decreasing the level of significance required to reject the null hypothesis (e.g. from .05 to .10), increases the probability of making a Type I error.
] + ()] + + + + + + + + +

Basic Concepts Underlying Inferential Statistics
♦ Levels of Significance
Small group discussion:
 What is the level of significance you are going to select in your study and why?
+ p = .10
• p = 05
* p = .01
• p = .001
33

Basic Concepts Underlying Inferential Statistics	
 Standard error of the mean 	
♦ Null Hypothesis (H _o)	
♦ Tests of Significance	
♦ Type I and Type II Errors	
Levels of Significance	
Practical Significance	
♦ Two- & One-tailed Tests	
Degrees of Freedom	
	34

Basic Concepts Underlying Inferential Statistics	
 Practical Significance Reflects the possibility that a statistically significant finding may be unimportant A generalizable but very small difference A difference so small it is practically <u>in</u>significant <i>Effect size</i> (ES) reflects how many standar deviation scores the obtained findings are apart. An ES of .33 or more is typically used to determine if the difference is meaningful. In other words, one third of a SD difference is typically considered important or practically significant. 	nt. d

Basic Concepts Underlying Inferential Statistics	9
Standard error of the mean	
♦ Null Hypothesis (H₀)	
Tests of Significance	
♦ Type I and Type II Errors	
Levels of Significance	
Practical Significance	
Two- & One-tailed Tests	
Degrees of Freedom	
	36

Basic Concepts Underlying Inferential Statistics	
 Two- & One-tailed test Tests of significance can be either one- or two-tailed (Two-tailed is most common). If it is hypothesized that the difference or relationship will only occur in one direction (you have a specific directional hypothesis) then use a one-tailed test. A smaller difference (exactly half) will be required to be considered significant if you use a one-tailed test. However, if it is possible for the difference or relationship to go either way, then use a two-tailed test. A bigger difference will be required to be considered significan if you use a two-tailed test. 	• • • • • • • • • • • • • • • • • • •
37	

Basic Concepts Underlying Inferential Statistics	
Standard error of the mean	
♦ Null Hypothesis (H _o)	
♦ Tests of Significance	
♦ Type I and Type II Errors	
Levels of Significance	
Practical Significance	
♦ Two- & One-tailed Tests	
Degrees of Freedom	
	40

 Degrees of Freedom "Suppose we ask you to name any five numbers. You agree and say '1, 2, 3, 4, 5." In this case N is equal to 5, you had 5 choices and you could select any number for each choice. In other words, each number was 'free to vary;' it could have been any number you wanted. Thus, you had 5 degrees of freedom for your selection (<u>df</u> = N). Now suppose we tell you to name 5 numbers and you begin with '1, 2, 3, 4,' and we say Wait! The mean of the five numbers you choose must be 4. Now you have no choice - your last number must be 10 to achieve the required mean of 4 (i.e., 1 + 2 + 3 + 4 + 10 = 20/5 - 4). That final number is not free to vary; in the language of statistics, you lost one degree of freedom because of the restriction that the mean must be 4. In this situation, you only had 4 degrees of freedom (df = N - 1)." 	Basic Concepts Underlying Inferential Statistics
	 Degrees of Freedom "Suppose we ask you to name any five numbers. You agree and say '1, 2, 3, 4, 5." In this case N is equal to 5, you had 5 choices and you could select any number for each choice. In other words, each number was 'free to vary: It could have been any number you wanted. Thus, you had 5 degrees of freedom for your selection (df = N). Now suppose we tell you to name 5 numbers and you begin with '1, 2, 3, 4' and we say 'Wait! The mean of the five numbers you choose must be 4. Now you have no choice - your last number must be 10 to achieve the required mean of 4 (i.e., 1 + 2 + 3 + 4 + 10 = 20/5 - 4). That final number is not free to vary; in the language of statistics, you lost one degree of freedom because of the restriction that the mean must be 4. In this situation, you only had 4 degrees of freedom (df = N - 1)."

Types of Tests of Significance	e
Parametric Tests Paguine that	
the DV data represent an interval or ratio scale. the participants be independently selected (random sampling).	
 the variable measured not be extremely skewed. Nonparametric Tests 	
 Make no assumptions about the shape of the distribution 	
 Can be used when the DV data represents a nominal or ordinal scale. When used it is more difficult to reject the null hypothesis, thus if appropriate researchers typically us parametric statistics. 	se 42

The <i>t</i> Test
 Assesses the significance of the difference observed between two means
 Independent Samples t test is used when the two samples are randomly formed without any kind of matching
 Nonindependent Samples t test is used to compare groups when they were formed using some type of matching procedure, or when you are looking at a single group's pre- and post-test results.
Small group discussion: What kind to t test will you use in your study? 43

	Factorial Analysis of Variance										
	• T	he statist ariables.	ic used v	vhen a sl	tudy em	ploys tw	o or mon	e indepe	ndent		
	Also assesses the interaction observed among the variables.										
	Example: IVs = IO & Reading jost Method										
	 DV = Reading test SS 										
-f-		Graph	the follow	ving two	data se	ts			1		
		Why is	this con	sidered a	a 2X2 de	esign?					
	in frage	Readin	g inst. n	nethod			Readir	ng inst. r	nethod		
		Α	В				Α	В			
Ι	High	80	40	60	Ι	High	80	60	70		
Q	Low	60	20	-40	Q	Low	20	40	- 30		
		70	30				50	50			
									45		

Analysis of Covariance (AN	COVA
An example of statistical (vs. experimental) control.	
 Matching is an example of experime control. 	ental
Because ANCOVA can reduce ra sampling error by equating differe groups, it increases the power of significance test (the test's ability reject the null hypothesis).	indom ent the to

Chi Square
A test of significance used when the data are in the form of frequency counts or percentages and proportions that car be converted into frequencies.
Appropriate for use when using nomina both IV and DV data that is either a true category (male/female) or an artificial category (tall/short).

-		

 Digi	t N	am	ing	Sp	ee	d T	est			
32533	13586	39292	64894	91665 Fro	68953 m A	19645	15953	38311	28659	
68248	83542	99634	91826	61368 Foi	34113 m B	65481	16544	35635	45318	

Ē	Dat DN	a A S A	naly: DHD	sis:) vs.	nor	ו-AD	DHD	
	Ē	C1	C2	C3	C4	C5	C6	
		S num	ADD DNT	C DNT	DNSDiff	DNSRank	signtest	
	1	1	19.50	18.25	1.25	6	+	
<u>-</u>	2	2	32.95	24.08	8.87	15	+	
	3	3	24.35	21.65	2.70	8	+	
	4	4	20.70	16.50	4.20	12	+	
	5	5	15.50	19.53	-4.03	2	-	
- nor nor da	6	7	32.90	20.40	12.50	18	+	
	7	8	22.30	25.60	-3.30	3	-	
	8	9	26.60	17.80	8.80	14	+	
	9	10	20.75	25.15	-4.40	1	-	
	10	11	23.50	21.30	2.20	7	+	
	11	12	22.45	18.45	4.00	11	+	
	12	13	33.47	23.02	10.45	16	+	
	13	14	29.37	22.01	7.36	13	+	
	14	15	35.40	19.99	15.41	19	+	
	15	16	23.50	23.41	0.09	4	+	
	16	17	60.50	24.62	35.88	20	+	
	17		•	*			0	
	18	19	30.65	18.25	12.40	17	+	
	19	20	28.25	25.27	2.98	10	+	
	20	22	25.40	24.95	0.45	5	+	64
	21	23	23.60	20.65	2.95	9	+	51

Ne	xt week
•	Qualitative Research: Overview, Data Collection/Analysis, Narrative and Ethnographic Research
•	Read Educational Research Chapters 13, 14 16, 20 & 21.
	52

